Cancer Research The Modern Research Tool
Featured Products
- Swine Skeletal Muscle Fibroblasts
- Swine Pancreatic Islets Cells
- Swine Lung Alveolar Cells
- Swine kidney Fibroblasts
- Swine Hepatocytes
- Swine Dermal Fibroblats
- Swine Cardiomyocytes
- Swine Cardiac Fibroblasts
- Rat Sprague Dolly Serum Wistar
- Rat Sprague Dolly Serum SD
- Rat Sprague Dolly Serum Immuno-deficient
- Rat Sprague Dolly Plasma Pooled Wistar
- Rat Sprague Dolly Plasma Pooled SD
- Rat Sprague Dolly Plasma Pooled Immuno-deficient
- Rat Sprague Dolly Plasma Female Immuno-deficient
- Rat Schwann Cells Wistar
- Rat Schwann Cells SD
- Rat Schwann Cells Immuno-deficient
- Rat Pulmonary Fibroblasts Wistar
- Rat Pulmonary Fibroblasts SD
- Rat Pulmonary Fibroblasts Immuno-deficient
- Rat Lymphatic Fibroblasts Wistar
- Rat Lymphatic Fibroblasts SD
- Rat Lymphatic Fibroblasts Immuno-deficient
- Rat IGS Serum Wistar
- Rat IGS Serum SD
- Rat IGS Serum SD
- Rat IGS Serum Immuno-deficient
- Rat IGS Plasma Wistar
- Rat IGS Plasma SD
- Rat IGS Plasma Pooled Wistar
- Rat IGS Plasma Pooled SD
- Rat IGS Plasma Pooled Immuno-deficient
- Rat IGS Plasma Immuno-deficient
- Rat Hepatocytes Suspension Wistar
- Rat Hepatocytes Suspension SD
- Rat Hepatocytes Suspension Immuno-deficient
- Rat Hepatocytes Plateable-Wistar
- Rat Hepatocytes Plateable-SD
- Rat Hepatocytes Plateable-Immuno-deficient
- Rat Cardiomyocytes Wistar
- Rat Cardiomyocytes SD
- Rat Cardiomyocytes Immuno-deficient
- Rat Cardiac Fibroblasts Wistar
- Rat Cardiac Fibroblasts SD
- Rat Cardiac Fibroblasts Immuno-deficient
- Rat Brain Vascular Pericytes Wistar
- Rat Brain Vascular Pericytes SD
- Rat Brain Vascular Pericytes Immuno-deficient
- Rat Bone Marrow Derived NK Cells Wistar
- Rat Bone Marrow Derived NK Cells Wistar
- Rat Bone Marrow Derived NK Cells Immuno-deficient
- Rat Bone Marrow Derived Muse Cells Wistar
- Rat Bone Marrow Derived Muse Cells SD
- Rat Bone Marrow Derived Muse Cells Immuno-deficient
- Rat Bone Marrow Derived Muse Cells
- Rat Bone Marrow Derived Mononuclear Cells Wistar
- Rat Bone Marrow Derived Mononuclear Cells Immuno-deficient
- Rat Bone Marrow Derived Mononuclear Cells
- Rat Bone Marrow Derived Mesenchymal Stem Cells Wistar
- Rat Bone Marrow Derived Mesenchymal Stem Cells SD
- Rat Bone Marrow Derived Mesenchymal Stem Cells Immuno Deficient
- Rat Bone Marrow Derived Dendritic Cells Wistar
- Rat Bone Marrow Derived Dendritic Cells SD
- Rat Bone Marrow Derived Dendritic Cells Immuno-deficient
- Primary Human Hepatic Stellate Cells
- Mouse Primary Bone Marrow Derived NK Cells CD1
- Mouse Primary Bone Marrow Derived NK Cells C57
- Mouse Plateable Hepatocytes (CD1)
- Mouse Plateable Hepatocytes (BalbC)
- Mouse NOD SCID Plasma
- Mouse NOD SCID Lung Microsomes Mixed Gender
- Mouse NOD SCID Liver S9 Fraction Mixed Gender
- Mouse NOD SCID Liver Microsomes Mixed Gender
- Mouse NOD SCID Intestinal S9 Fraction Mixed Gender
- Mouse NOD SCID Intestinal Microsomes Mixed Gender
- Mouse NOD SCID Intestinal Cytosol Mixed Gender
- Mouse Muse cells CD1
- Mouse Muse cells C57
- Mouse Muse cells BalbC
- Mouse Lung S9 Fraction Mixed Gender
- Mouse Lung Microsomes Mixed Gender
- Mouse Lung Lysosomes Mixed Gender
- Mouse Lung Cytosol Mixed Gender
- Mouse Liver S9 Fraction Mixed Gender
- Mouse Liver Microsomes Mixed Gender
- Mouse Liver Microsomes Mixed Gender
- Mouse Liver Lysosomes Mixed Gender
- Mouse Liver Cytosol Mixed Gender
- Mouse Intestinal S9 Fraction Mixed Gender
- Mouse Intestinal Microsome Mixed Gender
- Mouse Intestinal Lysosomes Mixed Gender
- Mouse Intestinal Cytosol Mixed Gender
- Mouse Hybrid Plasma
- Mouse Hybrid Lung S9 Fraction Mixed Gender
- Mouse Hybrid Lung Microsomes Mixed Gender
- Mouse Hybrid Lung Lysosomes Mixed Gender
- Mouse Hybrid Lung Cytosol Mixed Gender
- Mouse Hybrid Liver S9 Fraction Mixed Gender
- Mouse Hybrid Liver Microsomes Mixed Gender
- Mouse Hybrid Liver Lysosomes Mixed Gender
- Mouse Hybrid Liver Cytosol Mixed Gender
- Mouse Hybrid Intestinal S9 Fraction Mixed Gender
- Mouse Hybrid Intestinal Microsomes Mixed Gender
- Mouse Hybrid Intestinal Lysosomes Mixed Gender
- Mouse Hybrid Intestinal Cytosol Mixed Gender
- Mouse Hepatocytes Suspension CD1
- Mouse Hepatocytes Suspension C57
- Mouse Hepatocytes Suspension BalbC
- Mouse Hepatocytes Plateable C57
- Mouse Derived Mesenchymal Stem Cells
- Mouse Derived Dendritic Cells
- Mouse DBA S9 Fraction Mixed Gender
- Mouse DBA Plasma
- Mouse DBA Lung S9 Fraction Mixed Gender
- Mouse DBA Lung Microsomes Mixed Gender
- Mouse DBA Lung Lysosome Mixed Gender
- Mouse DBA Lung Cytosol Mixed Gender
- Mouse DBA Liver S9 Fraction Mixed Gender
- Mouse DBA Liver Lysosomes Mixed Gender
- Mouse DBA Liver Cytosol Mixed Gender
- Mouse DBA Intestinal Microsomes Mixed Gender
- Mouse DBA Intestinal Lysosomes Mixed Gender
- Mouse DBA Intestinal Cytosol Mixed Gender
- Mouse Cytosol Mixed Gender
- Mouse Cardiomyocytes CD1
- Mouse Cardiomyocytes C57
- Mouse Cardiomyocytes BalbC
- Mouse Cardiac Fibroblasts CD1
- Mouse Cardiac Fibroblasts C57
- Mouse Cardiac Fibroblasts BalbC
- Mouse C57 BL/6N Plasma
- Mouse C57 BL/6N Lung S9 Fraction Mixed Gender
- Mouse C57 BL/6N Lung Microsomes Mixed Gender
- Mouse C57 BL/6N Lung Lysosomes Mixed Gender
- Mouse C57 BL/6N Lung Cytosol Mixed Gender
- Mouse C57 BL/6N Liver S9 Fraction Mixed Gender
- Mouse C57 BL/6N Liver Microsomes Mixed Gender
- Mouse C57 BL/6N Liver Lysosomes Mixed Gender
- Mouse C57 BL/6N Liver Cytosol Mixed Gender
- Mouse C57 BL/6N Intestinal S9 Fraction Mixed Gender
- Mouse C57 BL/6N Intestinal Microsomes Mixed Gender
- Mouse C57 BL/6N Intestinal Lysosomes Mixed Gender
- Mouse Brain Vascular Pericytes
- Human Umbilical Cord Blood Derived NK cells
- Human Umbilical Cord Blood Derived Mononuclear cells
- Human Umbilical Cord Blood Derived Dendritic Cells
- Human Umbilical Cord Blood Derived CD34+ Cells
- Human T Helper Cells
- Human Splenic Fibroblasts
- Human Splenic Endothelial Cells
- Human Skin S9 Fraction Mixed Gender
- Human Skin Derived Microvascular Dermal Endothelial Cells Adult
- Human Skin Derived Epidermal Melanocytes Fetal
- Human Skin Derived Epidermal Melanocytes Adult
- Human Skin Derived Epidermal Keratinocytes Neonatal
- Human Skin Derived Epidermal Keratinocytes Fetal
- Human Skin Derived Epidermal Keratinocytes Adult
- Human Skin Derived Dermal Fibroblasts Fetal
- Human Skin Derived Dermal Fibroblasts Adult
- Human Serum Peripheral Blood Single Donor
- Human Serum Cord Blood Single Donor
- Human Serum Bone Marrow Single Donor
- Human Seminal vesicles microvascular endothelial cells
- Human Seminal Vesicles Fibroblasts
- Human Seminal Vesicles Endothelial cells
- Human S9 Fraction Heart
- Human S9 Fraction
- Human Pulmonary Small Airway Epithelial Cells
- Human Pulmonary Fibroblasts
- Human Pleatable Hepatocytes Pooled
- Human Plateable Hepatocytes
- Human Plasma Cord Blood Pooled
- Human Plasma
- Human Peripheral Blood-Derived NK Cells
- Human Peripheral Blood-Derived Muse Cells
- Human Peripheral Blood-Derived Mononuclear Cells
- Human Peripheral Blood-Derived Monocytes
- Human Peripheral Blood-Derived Mesenchymal Stem Cells
- Human Peripheral Blood-Derived Cytotoxic T-Cells
- Human Pericardial Fibroblasts
- Human Ovarian Surface Epithelial Cells
- Human Ovarian Fibroblasts
- Human Muse cells
- Human Microvascular Endothelial Cells
- Human Mammary Smooth Muscle Cells
- Human Mammary Fibroblasts
- Human Mammary epithelial cells
- Human Lung S9 Fraction Mixed Gender
- Human Lung Microsomes Mixed Gender
- Human Liver S9 Fraction Mixed Gender
- Human Liver Microsomes Mixed Gender
- Human Liver Microsomes
- Human Kidney Fibroblasts
- Human Islet Beta Cells
- Human Intestine Microsomes Pooled Mixed Gender
- Human Intestinal S9 Fraction Mixed Gender
- Human Hepatocytes in Suspension
- Human Eye Derived Limbal Fibroblasts
- Human Extra Embryonic Fetal Tissues Derived Mesenchymal Stem Cells
- Human Extra Embryonic Fetal Tissues Derived CD34 Positive Cells
- Human Endometrial Epithelial Cells
- Human Dental Pulp Derived Mesenchymal stem cells
- Human Dental Pulp Derived Gingival Fibroblasts
- Human Cytotoxic T Cells
- Human Cardiomyocytes
- Human Cardiac Fibroblasts
- Human Bronchial Fibroblasts
- Human Bone Marrow-Derived NK Cells
- Human Bone Marrow-Derived Mononuclear cells
- Human Bone Marrow-Derived Mesenchymal Stem Cells
- Human Bone Marrow-Derived Dendritic cells
- Human Bone Marrow-Derived CD 34 positive cells
- Human Aortic Smooth Muscle Cells
- Human Aortic Endothelial Cells
- Human Adipose Tissue-Derived Stromal Vascular Fraction
- Human Adipose Tissue-Derived Preadipocytes
- Human Adipose Tissue derived Mesenchymal Stem cells
Drop your Query
Cancer cell lines are perfect in vitro model systems used as a potential alternative to study biological processes. These cell lines are prepared with immortalized cancer cells that divide and grow continuously under optimum laboratory conditions. This goes without explaining why human cancer cell lines are more deliberately used to study cancer biology for authenticating existing treatments and developing efficient ones. Currently, multiple areas of ongoing research are accompanying CRISPR as a method to correct pathogenic point mutations in these cell lines.
However, it is very important to understand the basic difference between primary cancer cells and cancer cell lines, which one is the better tool for cancer research as well as gene editing techniques like CRISPR.
Cancer cell lines vs primary cancer cells: what is the difference?
There is a cardinal difference between immortal cell lines and cancer cell lines and is associated with their genetic makeup. Studies have revealed so far that genetic instability is the key feature associated with the cancerous proliferation of cells, and the same has been proven based on genetic heterogeneity observed in tumour biopsies. Interestingly, this heterogeneity is one of the reasons for tumour recurrence. Contradictory to the same, immortal cell lines are typically dominated by one clone of prospective tumour cells, further lacking heterogeneity. Some studies have even suggested that these cancer cell lines are majorly prone to genetic drift, when cultured for a longer duration, and hence are not true responses to cancers. Technologically as well, due to recent advances in CRISPR, it is quite feasible to study genetic drifts in primary cells as opposed to cancer cell lines. However, one should understand that a wide range of studies going on with both primary cells and cancer cell lines.
Kosheeka is maintaining a good inventory for different types of cancer like
- Leukaemia cell lines
– JURKAT E6.1
– HL-60
- Pancreatic cancer cell lines
– CFPAC-1
– PANC-1
- Colorectal cancer cell lines
– CACO-2
– LOVO
- Prostate cancer cell lines
– DU 145
– LNCaP
- Liver cancer cell lines
– HEP G2
– HEPA RG
- Breast cancer cell lines
– HCC 1937
The cancer cell lines have a long-lasting history to study underlying molecular mechanisms, especially in some fields like cardiovascular diseases and neuroscience. Some of the important advantages to choose cancer cell lines as disease models are that they carry the number of aberrant mutations that arose in the tumour, from which these cell lines were derived. Importantly, these cancer cell lines are used to study many biological processes that have been widely used in pharmacological studies. Recently, OMICS technology has supported the characterization of hundreds of other cell lines; which further reinforced the concept of cell line usefulness in cancer biology. These data have been made available through multiple online datasets, which further made it possible to identify detailed molecular alterations and mutations. This way, it is possible for researchers to select an appropriate model system for their research. At the same time, we encourage the right use of cell lines, following appropriate guidelines along with the best quality and consistency.
Considering the challenges that may be encountered in developing a suitable model, including requisites like special media, extracellular matrices and finally the healthy, cancer cell lines/cancer stem cells to develop the model correctly.
On a path to developing the right cancer model for your experiments, Kosheeka may help you to
- To obtain the right starting model i.e., cancer stem cells or cancer cell lines that thoroughly reflect tumour biology. We can even help you in providing patient-specific customized primary stem cells for your experiments.
- To provide special extracellular matrices that mimic the cellular and matrix complexity of native tissues.
- Large scale production of definitive cells and cell lines to reduce batch variation and inconsistency.