Cancer Research The Modern Research Tool
Featured Products
- Wistar Rat Whole Blood
- Wistar Rat Serum
- Wistar Rat Plasma
- Wistar Rat Liver S9
- Wistar Rat Liver Microsomes
- Wistar Rat Liver Cytosol
- Wistar NK cells
- Wistar Mononuclear cells
- Wistar Mesenchymal stem cells
- Wistar Dermal fibroblasts
- Wistar Dendritic cells
- Villous Mesenchymal Stem Cells
- Umbilical Cord Blood Derived Dendritic Cells
- Swiss Albino Mouse Liver S9
- Swiss Albino Mouse Liver Microsomes
- Swiss Albino Mouse Liver Cytosol
- Swine Skeletal Muscle Fibroblasts
- Swine Primary Bone Osteoblasts
- Swine Pancreatic Islets Cells
- Swine Lung Alveolar Cells
- Swine kidney Fibroblasts
- Swine Hepatocytes
- Swine Dermal Fibroblats
- Swine Cardiomyocytes
- Swine Cardiac Fibroblasts
- Swine Bone Marrow Mononuclear Cells
- Skin Dermal cells
- SD Rat Whole Blood
- SD Rat Serum
- SD Rat Plasma
- SD Rat Liver S9
- SD Rat Liver Microsomes
- SD Rat Liver Cytosol
- SD Rat Intestine S9
- SD Rat Intestine Cytosol
- SD Rat Intestinal Microsomes
- SD NK cells
- SD Muse cells
- SD Mononuclear cells
- SD Mesenchymal stem cells
- SD Dermal fibroblasts
- SD Dendritic cells
- Rhesus Monkey Whole Blood
- Rhesus Monkey Serum
- Rhesus Monkey Plasma
- Rat Schwann Cells Wistar
- Rat Schwann Cells SD
- Rat Schwann Cells Immuno-deficient
- Rat Pulmonary Fibroblasts Wistar
- Rat Pulmonary Fibroblasts SD
- Rat Pulmonary Fibroblasts Immuno-deficient
- Rat Lymphatic Fibroblasts Wistar
- Rat Lymphatic Fibroblasts SD
- Rat Lymphatic Fibroblasts Immuno-deficient
- Rat Hepatocytes Suspension Wistar
- Rat Hepatocytes Suspension SD
- Rat Hepatocytes Suspension Immuno-deficient
- Rat Hepatocytes Plateable-Wistar
- Rat Hepatocytes Plateable-SD
- Rat Hepatocytes Plateable-Immuno-deficient
- Rat Cardiomyocytes Wistar
- Rat Cardiomyocytes SD
- Rat Cardiomyocytes Immuno-deficient
- Rat Cardiac Fibroblasts Wistar
- Rat Cardiac Fibroblasts SD
- Rat Cardiac Fibroblasts Immuno-deficient
- Rat Brain Vascular Pericytes Wistar
- Rat Brain Vascular Pericytes SD
- Rat Brain Vascular Pericytes Immuno-deficient
- Rat Bone Marrow Derived NK Cells Wistar
- Rat Bone Marrow Derived NK Cells Immuno-deficient
- Rat Bone Marrow Derived Muse Cells Wistar
- Rat Bone Marrow Derived Muse Cells SD
- Rat Bone Marrow Derived Muse Cells
- Rat Bone Marrow Derived Mononuclear Cells Wistar
- Rat Bone Marrow Derived Mononuclear Cells Immuno-deficient
- Rat Bone Marrow Derived Mononuclear Cells
- Rat Bone Marrow Derived Mesenchymal Stem Cells Wistar
- Rat Bone Marrow Derived Mesenchymal Stem Cells SD
- Rat Bone Marrow Derived Mesenchymal Stem Cells Immuno Deficient
- Rat Bone Marrow Derived Dendritic Cells Wistar
- Rat Bone Marrow Derived Dendritic Cells SD
- Rat Bone Marrow Derived Dendritic Cells Immuno-deficient
- Primary Hepatocytes Plateable C 57
- Primary Hepatocytes in Suspension CD-1
- Peripheral Blood-Derived Muse Cells
- Pancreatic islets beta cells
- Muse Cells
- Mouse Primary Bone Marrow Derived NK Cells CD1
- Mouse Primary Bone Marrow Derived NK Cells C57
- Mouse Muse cells CD1
- Mouse Muse cells C57
- Mouse Muse cells BalbC
- Mouse Hybrid Liver S9 Fraction Mixed Gender
- Mouse Derived Mesenchymal Stem Cells
- Mouse Derived Dendritic Cells
- Mouse DBA S9 Fraction Mixed Gender
- Mouse DBA Lung S9 Fraction Mixed Gender
- Mouse DBA Liver S9 Fraction Mixed Gender
- Mouse Cytosol Mixed Gender
- Mouse Cardiomyocytes C57
- Mouse Cardiomyocytes BalbC
- Mouse Cardiac Fibroblasts C57
- Mouse Cardiac Fibroblasts BalbC
- Mouse C57 BL/6N Liver S9 Fraction Mixed Gender
- Mouse Brain Vascular Pericytes
- Mesenchymal Stem Cells
- Macaque Monkey blood mononuclear cells
- Lung alveolar cells
- Liver Hepatocytes plateable
- Lewis Rat Whole Blood
- Lewis Rat Serum
- Lewis Rat Plasma
- Kidney Fibroblasts
- Human Whole Blood
- Human Vaginal epithelial cells
- Human Umbilical Cord Blood Derived NK cells
- Human Umbilical Cord Blood Derived Mononuclear cells
- Human Umbilical Cord Blood Derived CD34+ Cells
- Human T Helper Cells
- Human Splenic Fibroblasts
- Human Splenic Endothelial Cells
- Human Skin S9 Fraction Mixed Gender
- Human Skin Derived Microvascular Dermal Endothelial Cells Adult
- Human Skin Derived Epidermal Melanocytes Fetal
- Human Skin Derived Epidermal Melanocytes Adult
- Human Skin Derived Epidermal Keratinocytes Neonatal
- Human Skin Derived Epidermal Keratinocytes Fetal
- Human Skin Derived Epidermal Keratinocytes Adult
- Human Skin Derived Dermal Fibroblasts Fetal
- Human Skin Derived Dermal fibroblasts Adult
- Human Skin Derived Dermal Fibroblasts Adult
- Human Seminal vesicles microvascular endothelial cells
- Human Seminal Vesicles Fibroblasts
- Human Seminal Vesicles Endothelial cells
- Human S9 Fraction Heart
- Human Pulmonary Small Airway Epithelial Cells
- Human Pulmonary Fibroblasts
- Human Pleatable Hepatocytes Pooled
- Human Plateable hepatocytes
- Human Peripheral Blood-Derived NK Cells
- Human Peripheral Blood-Derived Mononuclear Cells
- Human Peripheral Blood-Derived Monocytes
- Human Peripheral Blood-Derived Mesenchymal Stem Cells
- Human Peripheral Blood-Derived Cytotoxic T-Cells
- Human Peripheral Blood Derived Serum
- Human Peripheral Blood Derived Plasma
- Human Pericardial Fibroblasts
- Human Ovarian Surface Epithelial Cells
- Human Ovarian Fibroblasts
- Human Muse cells
- Human Microvascular Endothelial Cells
- Human Mast cells
- Human Mammary Smooth Muscle Cells
- Human Mammary Fibroblasts
- Human Mammary epithelial cells
- Human Lung S9
- Human Lung Microsomes
- Human Lung Cytosol
- Human Liver S9
- Human Liver Microsomes
- Human Liver Cytosol
- Human Kidney Fibroblasts
- Human Islets Beta cells
- Human Islet Beta Cells
- Human Intestine S9
- Human Intestine Microsomes
- Human Intestine Cytosol
- Human Hepatocytes, Plateable
- Human Hepatocytes in Suspension
- Human Eye Derived Primary Retinocytes
- Human Eye Derived Limbal Fibroblasts
- Human Extra Embryonic Fetal Tissues Muse cells
- Human Extra Embryonic Fetal Tissues Derived CD34 Positive Cells
- Human Extra Embryonic Fetal Tissues Dendritic Cells
- Human Endometrial Epithelial Cells
- Human Cytotoxic T Cells
- Human Cord Blood Derived Serum
- Human cord blood derived Plasma
- Human Cardiomyocytes
- Human Cardiac Fibroblasts
- Human Bronchial Fibroblasts
- Human Bone Marrow-Derived NK Cells
- Human Bone Marrow-Derived Mononuclear cells
- Human Bone Marrow-Derived Mesenchymal Stem Cells
- Human Bone Marrow-Derived Dendritic cells
- Human Bone Marrow-Derived CD 34 positive cells
- Human Bone Marrow Blood Derived Serum
- Human bone marrow blood derived Plasma
- Human Aortic Smooth Muscle Cells
- Human Aortic Endothelial Cells
- Human Adipose Tissue-Derived Stromal Vascular Fraction
- Human Adipose Tissue-Derived Preadipocytes
- Human Adipose Tissue derived Mesenchymal Stem cells
- Horse peripheral blood mononuclear cells
- Horse mesenchymal stem cells-adipose tissue
- Hepatic Stellate Cells
- Golden Syrian Hamster Serum
- Golden Syrian Hamster Plasma
- Gingival Fibroblasts
- Endothelial cells
- Dog mesenchymal stem cells adipose tissue
- Dog hepatocytes plateable
- Dog blood mononuclear cells
- Dental Pulp Mesenchymal Stem Cells
- Dendritic cells
- Cynomolgus Monkey Serum
- Cynomolgus Monkey Plasma
- Cynomolgus Monkey blood mononuclear cells
- Cynomolgus cryopreserved hepatocytes, plateable
- CD-1 Schwann cells
- CD-1 Pulmonary fibroblasts
- CD-1 NK cells
- CD-1 Muse cells
- CD-1 Mouse Whole Blood
- CD-1 Mouse Serum
- CD-1 Mouse Plasma
- CD-1 Mouse Lung S9
- CD-1 Mouse Lung Microsomes
- CD-1 Mouse Lung Cytosol
- CD-1 Mouse Liver S9
- CD-1 Mouse Liver Microsomes
- CD-1 Mouse Liver Cytosol
- CD-1 Mouse Intestine S9
- CD-1 Mouse Intestine Microsomes
- CD-1 Mouse Intestine Cytosol
- CD-1 Mononuclear cells
- CD-1 Mesenchymal stem cells
- CD-1 Hepatocytes plateable
- CD-1 Dermal Fibroblast
- CD-1 Dendritic cells
- CD-1 Cardiomyocytes
- CD-1 Cardiac fibroblasts
- CD-1 Brain vascular pericytes
- Cardiomyocytes
- Cardiac fibroblasts
- C57 Schwann cells
- C57 Pulmonary fibroblasts
- C57 NK cells
- C57 Muse cells
- C57 Mouse Whole Blood
- C57 Mouse Skin S9
- C57 Mouse Skin Microsomes
- C57 Mouse Skin Cytosol
- C57 Mouse Serum
- C57 Mouse Plasma
- C57 Mouse Lung S9
- C57 Mouse Lung Microsomes
- C57 Mouse Lung Cytosol
- C57 Mouse Liver S9
- C57 Mouse Liver Microsomes
- C57 Mouse Liver Cytosol
- C57 Mouse Intestine S9
- C57 Mouse Intestine Microsomes
- C57 Mouse Intestine Cytosol
- C57 Mouse Heart S9
- C57 Mouse Heart Microsomes
- C57 Mouse Heart Cytosol
- C57 Mononuclear cells
- C57 Mesenchymal stem cells
- C57 Hepatocytes Suspension
- C57 Dendritic cells
- C57 Cardiomyocytes
- C57 Cardiac fibroblasts
- C57 Brain vascular pericytes
- Brown Norway Rat Whole Blood
- Brown Norway Rat Serum
- Brown Norway Rat Plasma
- Beagle Whole Blood
- Beagle Serum
- Beagle Plasma
- Beagle Dog hepatocytes cryopreserved, plateable
- BalbC Schwann cells
- BalbC Pulmonary fibroblasts
- BalbC NK cells
- BalbC Muse cells
- BALBC Mouse Whole Blood
- BALBC Mouse Serum
- BALBC Mouse Plasma
- BalbC Mononuclear cells
- BalbC Mesenchymal stem cells
- BalbC Hepatocytes Suspension
- BalbC Hepatocytes plateable
- BalbC Dermal Fibroblasts
- BalbC Dendritic cells
- BalbC Cardiomyocytes
- BalbC Cardiac fibroblasts
- BalbC Brain vascular pericytes
- BALB/c Mouse Skin S9
- BALB/c Mouse Skin Microsomes
- BALB/c Mouse Skin Cytosol
- BALB/c Mouse Lung Cytosol
- BALB/C Mouse Liver S9
- BALB/c Mouse Liver Microsomes
- BALB/c Mouse Liver Cytosol
- BALB/c Mouse Intestine S9
- BALB/c Mouse Intestine Microsomes
- BALB/c Mouse Intestine Cytosol
- BALB/c Mouse Heart S9
- BALB/c Mouse Heart Microsomes
- BALB/c Mouse Heart Cytosol
- Amniotic Epithelial cells
Drop your Query
Considering the wide prevalence of cancer, various cancer cell lines are routinely used as the modern in vitro model systems for cancer research and drug discovery. Their applications in the scientific world are primarily linked with the use of an easily available replica of in vivo growing cancer for experimental purposes through the indefinite source of biological material.
The world of medical research has evolved over the period, and the cell lines isolated from cancer cells are frequently used in biomedical research for understanding the disease pathophysiology; and to explore potential new treatments. These immortalized cell lines grow continuously in an unlimited number of passages. Kosheeka is contributing to cancer research through several cell lines as a viable alternative that is free from any contamination.
Cancer cell lines are perfect in vitro model systems used as a potential alternative to study biological processes. These cell lines are prepared with immortalized cancer cells that divide and grow continuously under optimum laboratory conditions. This goes without explaining why human cancer cell lines are more deliberately used to study cancer biology for authenticating existing treatments and developing efficient ones.
Currently, multiple areas of ongoing research are accompanying CRISPR as a method to correct pathogenic point mutations in these cell lines. However, it is very important to understand the basic difference between primary cancer cells and cancer cell lines, which one is the better tool for cancer research as well as gene editing techniques like CRISPR.
Cancer cell lines vs primary cancer cells: what is the difference?
There is a cardinal difference between immortal cell lines and cancer cell lines and is associated with their genetic makeup. Studies have revealed so far that genetic instability is the key feature associated with the cancerous proliferation of cells, and the same has been proven based on genetic heterogeneity observed in tumour biopsies. Interestingly, this heterogeneity is one of the reasons for tumour recurrence. Contradictory to the same, immortal cell lines are typically dominated by one clone of prospective tumour cells, further lacking heterogeneity. Some studies have even suggested that these cancer cell lines are majorly prone to genetic drift, when cultured for a longer duration, and hence are not true responses to cancers. Technologically as well, due to recent advances in CRISPR, it is quite feasible to study genetic drifts in primary cells as opposed to cancer cell lines. However, one should understand that a wide range of studies going on with both primary cells and cancer cell lines.
Kosheeka maintains a good inventory of different types of cancer like
Leukaemia cell lines
- JURKAT E6.1
- HL-60
Pancreatic cancer cell lines
- CFPAC-1
- PANC-1
Colorectal cancer cell lines
- CACO-2
- LOVO
Prostate cancer cell lines
- DU 145
- LNCaP
Liver cancer cell lines
- HEP G2
- HEPA RG
Breast cancer cell lines
- HCC 1937
The cancer cell lines have a long-lasting history of being used to study underlying molecular mechanisms, especially in some fields like cardiovascular diseases and neuroscience. Some of the important advantages to choose cancer cell lines as disease models are that they carry the number of aberrant mutations that arose in the tumour, from which these cell lines were derived. Importantly. These cancer cell lines are used to study many biological processes that have been widely used in pharmacological studies.
Recently, OMICS technology has supported the characterization of hundreds of other cell lines; which further reinforced the concept of cell line usefulness in cancer biology. These data have been made available through multiple online datasets, which further made it possible to identify detailed molecular alterations and mutations. This way, it is possible for researchers to select an appropriate model system for their research. At the same time, we encourage the right use of cell lines, following appropriate guidelines along with the best quality and consistency.
Considering the challenges that may be encountered in developing a suitable model, including requisites like special media, extracellular matrices and finally the healthy, cancer cell lines/cancer stem cells to develop the model correctly.
On the path to developing the right cancer model for your experiments, Kosheeka may help you to
- To obtain the right starting model i.e., cancer stem cells or cancer cell lines that thoroughly reflect tumour biology. We can even help you in providing patient-specific customized primary stem cells for your experiments.
- To provide special extracellular matrices that mimic the cellular and matrix complexity of native tissues.
- Large-scale production of definitive cells and cell lines to reduce batch variation and inconsistency.